Symmetric algebra

Results: 572



#Item
211Numerical linear algebra / Matrices / Numerical software / Matrix theory / LAPACK / CUDA / Matrix / Symmetric matrix / Cholesky decomposition / Algebra / Linear algebra / Mathematics

Matrix computations on the GPU CUBLAS and MAGMA by example Andrzej Chrz¸ eszczyk

Add to Reading List

Source URL: developer.nvidia.com

Language: English - Date: 2014-10-22 14:33:13
212Symmetric functions / Invariant theory / Representation theory / Algebraic combinatorics / Orthogonal polynomials / Littlewood–Richardson rule / Schur polynomial / Eigenvalues and eigenvectors / Kronecker coefficient / Algebra / Abstract algebra / Mathematics

Littlewood-Richardson coefficients, the hive model and Horn inequalities Ronald C King School of Mathematics, University of Southampton Southampton, SO17 1BJ, England Presented at:

Add to Reading List

Source URL: www.personal.soton.ac.uk

Language: English - Date: 2008-09-11 10:51:39
213Matrices / Numerical linear algebra / Matrix theory / Symmetric matrix / Normal matrix / Matrix decomposition / MATLAB / Matrix / Skew-symmetric matrix / Algebra / Linear algebra / Mathematics

ISSN[removed]UMIST The Matrix Computation Toolbox for MATLAB (Version 1.0)

Add to Reading List

Source URL: www.ma.man.ac.uk

Language: English - Date: 2002-08-28 03:03:52
214Abstract algebra / Polynomials / Symmetric polynomial / Elementary symmetric polynomial / Algebraic combinatorics / Spectral theory / Algebra / Mathematics / Symmetric functions

The hive model for Kostka and Littlewood-Richardson coefficients Ronald C King ´ eric ´ Toumazet Ongoing joint work with Christophe Tollu and Fred

Add to Reading List

Source URL: www.personal.soton.ac.uk

Language: English - Date: 2005-09-23 10:42:42
215Symmetric functions / Representation theory of finite groups / Matrices / Young tableau / Enumerative combinatorics / Matrix / Alternating sign matrix / Algebraic combinatorics / Robinson–Schensted–Knuth correspondence / Algebra / Mathematics / Abstract algebra

Alternating sign matrices Ronald C King September 30, 2005 School of Mathematics, University of Southampton, Southampton SO17 1BJ, England

Add to Reading List

Source URL: www.personal.soton.ac.uk

Language: English - Date: 2005-09-30 05:14:22
216Symmetric functions / Representation theory / Schubert polynomial / Factorial / Spectral theory of ordinary differential equations / Λ-ring / Mathematics / Algebra / Mathematical analysis

Addendum to Factorial Grothendieck Polynomials Peter J. McNamara [removed] 22 July 2011 Abstract In [Mc], the relationship between factorial Grothendieck and double Grothendieck

Add to Reading List

Source URL: www.maths.usyd.edu.au

Language: English - Date: 2013-07-01 22:40:33
217Matrix theory / Eigenvalues and eigenvectors / Matrix / Symmetric matrix / Determinant / Perron–Frobenius theorem / Eigendecomposition of a matrix / Algebra / Linear algebra / Mathematics

A-4 APPENDIX A EIGENVALUE PROBLEMS

Add to Reading List

Source URL: rammb.cira.colostate.edu

Language: English - Date: 2005-02-06 11:31:26
218Mathematics / Lie algebra / Matrix / Symmetric matrix / Lie groups / Algebra / Matrices

Lie group structure and Markov invariants for the strand symmetric model [ – an adventure in invariant theory ] Peter Jarvis School of Mathematics and Physics University of Tasmania

Add to Reading List

Source URL: www.maths.utas.edu.au

Language: English - Date: 2011-11-08 20:32:06
219Singular value decomposition / Matrices / Mathematics / Trigonometry / Rotation matrix / Linear algebra / Data analysis / Principal component analysis

Chapter 2 lecture questions Q1: “Prove that C is a real, symmetric, positive semi-definite matrix” requires us to prove that for any vector v 6= 0, it follows that vT Cv ≥ 0. Proof: vT Cv = vT E[(y − y)(y − y)T

Add to Reading List

Source URL: www.ocgy.ubc.ca

Language: English - Date: 2013-10-04 14:07:27
220Tensors / Matrix theory / Data analysis / Multilinear algebra / Singular value decomposition / Symmetric tensor / Rank / Homogeneous polynomial / Covariance matrix / Algebra / Mathematics / Linear algebra

Journal of Machine Learning Research[removed]2832 Submitted 2/13; Revised 3/14; Published 8/14 Tensor Decompositions for Learning Latent Variable Models Animashree Anandkumar

Add to Reading List

Source URL: jmlr.csail.mit.edu

Language: English - Date: 2014-10-04 14:56:37
UPDATE